CCE	A I I		N 4: al	D:
GSE	Aigebra	11 —	Midterm	Keview

Name:	Date:

1)
$$(4+2i)-(5-i)=$$

2)
$$(1-3i)(4+2i) =$$

3)
$$\sqrt{-25} =$$

4) Write the conjugate of 5+7i.

5)
$$i^{50} =$$

6)
$$\frac{1+2i}{3-i} =$$

7) Write $x^2 + 25$ as the product of its complex factors.

9) Rewrite $x^{-\frac{4}{3}}$ in radical notation.

10) Rewrite $3 \cdot \sqrt[5]{x^2}$ in rational exponent notation.

11)
$$(2x^3 - x^2 + 3) + (5x^2 + x - 8) =$$

12) Write a polynomial function in standard form which gives the volume of a box whose height is x, whose length is 4

12) Write a polynomial function in standard form which gives the volume of a box whose height is x, whose length is 4 more than the height and whose width is 2 less than the height.

Х	1	2	3	4	5
f(x)	7	1	8	-5	3
g(x)	3	-2	5	1	0

13)
$$f(g(4)) =$$

14) If
$$f(x) = x^2 - 2x$$
 and $g(x) = x + 2$, then $f \circ g(x) = x + 2$

X	2	3	4	5
f(x)	4	5	3	2

15)
$$f^{-1}(3) =$$

16) What is the coefficient of x^3 in the expansion of $(2x-1)^4$?

17) Find the inverse of $p(x) = 2x^2 - 3$ for $x \ge 0$.

18) The cost of producing x units of a product is given by the function $c(x) = 8x^2 - x + 5$. The revenue brought in for x units of the product is given by $r(x) = 14x^2 + 2x + 12$. Write the function giving the net profit, (r-c)(x), for x units of the product.

19) Divide using synthetic division.

$$(2x^3 - x^2 + 4x + 8) \div (x+1)$$

$$20) \ \frac{28x^4 - 14x^2}{7x^2} =$$

21) List the possible Rational Roots of $p(x) = 5x^3 + 6x^2 - 2x - 4$.
22) According to the Fundamental Theorem of Algebra, how many roots does the polynomial $5x^7 + 3x - 6$ have?
23) Use synthetic division and the Remainder Theorem to determine whether $(x+2)$ is a factor of $f(x) = x^3 + 2x^2 - 4x + 3$.
24) A polynomial has a root of $3-6i$. What other number must be a root of this polynomial?
25) Factor $x^2 + 12x + 20$.
26) Factor $4x^2-9$.
27) Factor $4x^2 - 11x - 3$.

					_
28)	What are the roots of th	e polynomial	p(x) = (x-3)	(x+1)(2x-5)	? (

29) Use synthetic substitution to find
$$f(-2)$$
 if $f(x) = x^3 - x^2 + 6x + 4$.

30) Classify this polynomial by its degree and the number of terms.

$$x^3 + 6x - 5$$

31) Use the multiplicity of the roots to write a possible equation for the polynomial in the graph above.

32) Explain how to determine the least possible degree of a polynomial by looking at its graph.

33) Draw the graph of a polynomial which is positive only on the interval (2, 5).

34) Describe the end-behavior of the function in the graph above using proper notation.

35) Draw the graph of a polynomial which is increasing only on the interval (2, 5).

36) Describe the end-behavior of $f(x) = -2x^5 + 6x - 5$ using proper notation.

37) Write the equation of a polynomial which has the end-behavior given below.

$$x \to -\infty, f(x) \to \infty$$

$$x \to \infty, f(x) \to \infty$$

38) Write the equation of a polynomial with 3 terms that has rotational symmetry about the origin.

39) Draw the graph of an even polynomial.

40) Draw the graph of a polynomial which is negative and decreasing at the point x = 5.